

Explicit-Constraint Branching for Solving Mixed-
Integer Programs
(Appears in Computing Tools for Modeling, Optimization and Simulation, M. Laguna
and J.L. González-Velarde, Kluwer Academic Publishers, Boston, 2000.)

Jeffrey A. Appleget1 and R. Kevin Wood2
1 TRADOC Analysis Center, Monterey, CA 93943
2 Operations Research Department, Naval Postgraduate School, Monterey, CA 93943

Key words: integer programming, branch and bound

Abstract: This paper develops a new generalized-branching technique called “explicit-
constraint branching” (ECB) to improve the performance of branch-and-
bound algorithms for solving mixed-integer programs (MIPs). ECB adds
structure to a MIP, in the form of auxiliary constraints and auxiliary integer
variables, to allow branching on groups of (original) integer variables that
would not otherwise be possible. Computational tests on three sets of real-
world MIPs demonstrate that ECB often improves solution times over
standard branch and bound, sometimes dramatically.

1. INTRODUCTION

This paper develops a simple new technique called “explicit-constraint
branching” (ECB) to improve the performance of branch-and-bound
algorithms for solving certain mixed-integer programs (MIPs). The
technique can be classified as a type of “generalized branching” (e.g., Sol
1994, Jörnsten and Larsson 1988) or “constraint branching” (Foster and
Ryan 1981). It is neither a specialization nor generalization of the
branching techniques based on “special ordered sets” (Beale and Tomlin
1970). We believe that ECB is a tool that should be in every integer
programmer’s toolkit.

Standard variable-based branch and bound solves the linear-
programming (LP) relaxation of a MIP and partitions the MIP’s feasible
region by branching on individual integer variables. As an example,

246

suppose we are solving a MIP for solution vector (x*, v*) where x and v
represent integer and continuous variables, respectively. We have just

obtained a solution x v* *,� � to the MIP’s LP relaxation, and some variable

$x j is fractional, i.e., m < $x j < m + 1 for some integer m. The standard

branching (partitioning) choices are

xj ≤ m or xj ≥ m + 1. (1)

Branching on individual variables is attractive since its implementation
is quite simple within the bounded-variable simplex algorithm that is
normally embedded in a MIP solver. Empirically, however, this type of
branching can create an unbalanced enumeration tree, which can lead to
excessive enumeration (Foster and Ryan 1981). We propose another
branching technique that has the potential to yield significant computational
improvements for some MIPs.

Suppose that we are solving a generic MIP with integer variables xj ≥ 0
for j ∈ J. Let J′ ⊆ J be an arbitrary, nonempty subset of J and define integer

coefficients α j for each xj, j ∈ J′. Then, Σj∈ J′α jxj must be integer in any
solution to the MIP, and a valid partition of the MIP’s feasible region is
derived from

α αj j

j J

j j

j J

x m x m
∈ ′ ∈ ′
∑ ∑≤ ≥ + or 1 , (2)

for any integer m. We call this partitioning scheme “constraint branching”
although, strictly speaking, it is a generalization of constraint branching as
defined by Foster and Ryan (1981).

Previous applications of constraint branching, to problems with special
structure, have proven to be highly effective. Such applications, with one
exception to be mentioned later, do not require that explicit constraints of
the form (2) be added. Examples include the special ordered sets (SOS) of
Beale and Tomlin (1970) and the techniques of Foster and Ryan (1981). In
a simplified fashion, we illustrate the constraint branching of Foster and
Ryan on the set-partitioning problem:

Explicit-Constraint Branching for Solving Mixed-Integer
Programs

247

SPP

s.t.

� �

� �

min

,

c x

x i I

x j J

j j

j J

j

j J

j

i

∈

∈

∑

∑ = ∀ ∈

∈ ∀ ∈

1

0 1

 (3)

where Ji ⊂ J for all i.
Suppose we are at the initial node of the branch-and-bound tree, have

just solved the LP relaxation of SPP for $x , and $x j is fractional for some j.

Select subset index f such that j ∈ Jf (there are at least two fractional

variables in Jf), and partition Jf into two disjoint subsets, J f
1 and J f

2 , each

containing one or more fractional variables. Then, a valid partition of the
SPP’s feasible region is

x xj

j J

j

j Jf f∈ ∈
∑ ∑≤ ≥

1 1

0 1 or . (4)

Those restrictions are equivalent to

x xj

j J

j

j Jf f∈ ∈
∑ ∑≤ ≤

1 2

0 0 or , (5)

because Σj∈ Jf xj = 1. Clearly, we can perform this type of branching
recursively on the subsets, and explicit constraints of the form (4) or (5) are

not needed: Simply fix variables in J f
1 or J f

2 to 0. We refer to this special

case of constraint branching as “implicit-constraint branching” since it can
be accomplished without adding explicit constraints like (4).

Implicit-constraint branching has been shown to be computationally
effective through the technique just described (Foster and Ryan 1981) and
through the techniques of special ordered sets (e.g., Hummeltenberg 1984,
Escudero 1988). In fact, the “SOS-Type-3” (S3) constraint-branching of
Escudero (1987, 1988), which is based on SOS Type 1 (S1) as defined by
Beale and Tomlin (1970), is quite similar to our set-partitioning example,
except: In SOS branching, the subsets of any Ji are created in a more rigid
fashion that depends on a predefined ordering of the variables. (Escudero
defines an S3 set to mean that all variables in the set are binary and are part

248

of a set-partitioning constraint. See the discussion on SOS in the next
section.)

Standard, variable-based branch and bound has difficulties with the SPP
because it sets individual variables to 0 or to 1. Setting a variable xj, j ∈ Ji,
to 0 can be a weak decision because all but one of the variables (there may
be thousands) in constraint i will be 0 in the final solution anyway; there
are typically many other variables in the constraint that can, collectively or
individually, replace the fractional value $x j and achieve nearly the same

objective function value as when xj = 0. Setting xj to 1 is a very strong
decision because it forces all other variables in Ji to 0. In fact, it forces
xj′ = 0 for all j′ ∈ U ′ ∈ ′′ −i j J ii J j: � � , and often has a significant effect on the

objective function value. An unbalanced enumeration tree results in such a
problem because a “1-branch” eliminates a very large number of possible
solutions from consideration further down the tree, while a “0-branch”
eliminates only a few (Foster and Ryan 1981).

Constraint branching described above moderates the strength of
branching decisions. Branching from a node in the enumeration tree
restricts all the variables in one subset to 0, and allows any combination of
the variables in the other subset to sum to 1. As the branching progresses,
the strong decision of setting a particular variable to 1 is deferred, while
unpromising variables are culled from the unrestricted “sum-to-1” subset
and placed in the new “set-to-0” subset. As a result, the enumeration tree is
better balanced and often smaller than the standard tree (Foster and Ryan
1981).

Implicit-constraint branching is useful but it has one severe drawback:
Special problem structure is required. It is natural to prefer implicit-
constraint branching to explicitly adding constraints of the form (2) because
of the computational overhead involved. But, when structure is lacking,
constraint branching with explicitly added constraints can reduce
enumeration significantly, and the overhead can be modest, especially with
today’s efficient LP solvers. We demonstrate explicit-constraint branching
in the next section.

2. EXPLICIT-CONSTRAINT BRANCHING

“Explicit-constraint branching” (ECB) allows the benefits of constraint
branching for MIPs lacking the special structure required of known
implicit-constraint branching techniques. ECB using (2) is set up by
(a) defining subsets Jk of the index set J of integer variables, (b) defining
integer coefficients αkj for each k and each for j ∈ Jk, (c) defining general
integer “branching variables” yk for each k, and (d) adding ECB constraints:

Explicit-Constraint Branching for Solving Mixed-Integer
Programs

249

α kj j k

j J

x y k
k

− = ∀
∈
∑ 0 . (6)

(Note: Additional information may imply tight bounds on the yk and such
bounds should be included; in some instances, the yk may even be binary.)
Constraint branching as in (2) is then performed by standard variable
branching on the variables yk. Our implementations form ECB constraints
before solving the MIP’s LP relaxation (“static ECB”), or after solving the
LP relaxation, but before the start of branching (“semi-dynamic ECB”). We
have not implemented a completely dynamic version of ECB that would
add (and delete) constraints within the enumeration tree. The following
example shows how ECB can exponentially reduce the enumeration
required to solve a simple MIP.

Consider the following MIP, a knapsack problem with 2n
n
�� 	
 alternate

optimal solutions:

P1� � max 3
1

2

x j

j

n

=
∑ (7)

s.t. 2 2 1
1

2

x nj

j

n

=
∑ ≤ + (8)

x j nj ∈ =0 1 1 2, , , ,� � K . (9)

The LP relaxation of P1 has extreme point solutions with n variables equal
to 1, one variable equal to 0.5, and n – 1 variables equal to 0. The objective
value of the LP relaxation is 3n + 1.5, which can be rounded down to 3n +
1 since the data are integer. Variable-based branch and bound forms a
partition based on the one fractional variable, designated xf here, and
branches using the restrictions “xf = 0 or xf = 1.” Each subsequent LP
relaxation solved at a node of the enumeration tree has one of the remaining
unfixed variables fractional, until n variables are fixed at 0 and an integer
solution is obtained. This solution is optimal and is obtained quickly, but it
takes much more work to prove that it is optimal: The upper bound from an
LP relaxation (of a restriction) does not change from 3n + 1 to the tight

250

value of 3n until n variables are fixed to 0. Such a solution is integral
anyway so, essentially, we cannot use the LP bound to trim the

enumeration tree at all. Consequently, all 2n
n
�� 	
 alternate optimal solutions

must be enumerated before the first solution is proven optimal. Of course,
we can solve this problem trivially by tightening the right-hand side to 2n,

or by adding a cut x nj
j

n
≤∑ =1

2
. But, excessive enumeration like this can

arise in problems where tightening right-hand sides is cumbersome or has
little effect, where useful cuts are difficult to find, and where the bound
provided by the LP relaxation changes often (by small amounts), rather
than rarely, as in the example.

We employ ECB on P1 by adding a single ECB constraint

x yj

j J∈
∑ − = 0 , (10)

where y ≥ 0 and y is integer. The LP relaxation solves as before for $x , and
the corresponding value for the branching variable y is $y = n + 0.5. If we
partition the IP’s feasible region based on y, rather than on a fractional xf —
this is accomplished within a branch-and-bound solver by setting the
“branching priority” higher for y than for the xj (e.g., Brooke et al. 1992,
pp. 281-283) — we derive the restrictions “y ≤ n or y ≥ n + 1.” The second
restriction is infeasible, and the first yields an LP relaxation with integer-
optimal extreme points. Thus, ECB with variable-based branch and bound
enumerates at most three LPs to solve this problem.

We note that the above example cannot be interpreted as an SOS
technique: (a) Type 1 SOS requires that exactly one variable in a specified
subset be positive (all others are 0) (Tomlin 1970), (b) Type 2 requires that
exactly two variables in a subset are positive (all others are 0) and those
two variables must be adjacent in some ordering of the subset (Tomlin
1970), and (c) Type 3 is essentially the same as Type 1 except that all
variables are binary and the variables are automatically identified as part of
a set-partitioning constraint (Escudero 1988) or a constraint that is
equivalent to a set-partitioning constraint through variable reflection (e.g.,
GAMS 1996). (These definitions vary in practice; for example, “exactly”
may be replaced by “at most,” and “positive” may be replaced by “1.”) One
special case of ECB and one variant of SOS are related, however, and we
explore the similarities and differences in Section 3.3.

It should also be noted that implicit-constraint branching for the SPP, as
described in the previous section, is “complete” in the sense that every
feasible solution can be enumerated by the partitioning scheme, and in

Explicit-Constraint Branching for Solving Mixed-Integer
Programs

251

theory, the method must converge to an optimal solution. However, we
typically intend to add only a modest number of ECB constraints to help
solve a problem, and thus our version of ECB is usually “incomplete,” i.e.,
standard branching on the original integer variables of the problem is
usually necessary for convergence. A dynamic version of ECB could be
made complete, but this is beyond the scope of the current research.

3. ILLUSTRATIVE EXAMPLES

Here we demonstrate the application of ECB to three real-world MIPs
and provide computational results. In each case, we exploit some
knowledge of the model to formulate potentially useful ECB constructs. All
three problems are also candidates for SOS branching, although only one
instance is related to ECB. We delay discussion of SOS to Section 3.3.

3.1 ECB for the Set-Partitioning Problem

The requirement that Σj∈ Jxj be an integer quantity in any solution to the
SPP is a less coercive requirement than is “each xj must be 0 or 1.” We can
implement the former requirement, just as in P1, by defining a general
integer variable y ≥ 0 and adding the single ECB constraint (10). By setting
the branching priority higher for y than for any of the xj, the branch-and-

bound algorithm will ensure that y = Σj∈ Jxj is integer before branching on
any individual xj. If y is or becomes integer, subsequent branching on an xj
may cause y to become fractional at which point branching reverts to y.

To create the ECB constraint above, we are taking advantage of this
knowledge about SPPs: A priori, every variable looks pretty much the
same. (This would also be the case for set-packing, set-covering and
knapsack problems, for instance.) As will be seen, even a single constraint
like (10) can substantially reduce computational effort. However, we can
try to extend the basic technique further.

The ECB constraint (10), along with branching priorities on integer
variables, expresses: “The sum of all relaxed integer variables must be
integer before requiring any individual variable to be integer.” When this
statement is satisfied, it is natural to ask for a somewhat stronger
requirement: “The sum of some subset of relaxed integer variables xj should
be integer before requiring any variable in that subset to be integer.” We
accomplish this through “nested ECB.”

252

Nested ECB separates the integer variables in one ECB constraint into
disjoint subsets and creates a new ECB constraint for each subset. (It is not
a requirement that the subsets be disjoint, but it is a logical and compelling
step in our initial exploration of this technique.) For the SPP, we create a
partition of J with subsets Jl ⊂ J, l ∈ L, and add ECB constraints

x y l Lj l

j Jl

− = ∀ ∈
∈
∑ 0 .

(Actually, any one of the nested constraints defined this way can be omitted
because it is implied by the others and the initial constraint defined over all
j ∈ J.) We set the branching priority high for y, intermediate for the yl, and
low for the xj. Of course, nesting can be carried out recursively many times,
but we have found in our test problems that one or two levels is the limit of
its usefulness.

The basic ECB constraint (10) for the SPP can certainly be added
without solving the problem’s LP relaxation. In fact, that constraint can
become a static part of the basic model and is thus a “static ECB
constraint.” Static nested constraints can be created by defining the subsets
Jl before solving any LP relaxation. Because these ECB constraints are
static, however, little benefit may be gained from them if $y and all $yl are

integer in the initial LP relaxation yet $x is fractional: The branch-and-
bound algorithm will immediately branch on some xj and ECB can only
make a contribution at some lower level in the enumeration tree. But, if we
solve the LP relaxation for $x and define the subsets Jl so that at least some
of the $yl are fractional, ECB must come into play immediately, even if $y
is initially integer. We test this “semi-dynamic nested ECB” by splitting J
into two subsets J1 and J2 using this procedure: (a) Evenly divide (roughly)
the variables with $x j = 0 between J1 and J2, (b) evenly divide (roughly) the

variables with $x j = 1 between J1 and J2, (c) evenly divide (roughly) the

fractional variables $x j between J1 and J2, and (d) if neither $x j
j J∈∑

1
 nor

$x j
j J∈∑

2
 is fractional, move one fractional variable between J1 and J2 to

ensure that both sums are fractional.
ECB is implemented for the SPP using the CPLEX Callable Library

(Version 3.0 1993). We use the “maximum-infeasibility” variable-selection
rule for branching which is, empirically, the best option for our test
problems among the four alternatives available. A relative optimality
criterion of 0.1% is used (CPLEX 1993, p. 123). All computation is
performed on an IBM RS/6000 Model 590 with 512 megabytes of RAM.

Explicit-Constraint Branching for Solving Mixed-Integer
Programs

253

Our test problems are modest-sized SPPs from the meat-packing
industry (Ronen 1997). The results are displayed in Table 1 and show that
“Basic ECB” improves solution times significantly for the four largest
problems. The value of semi-dynamic ECB is dubious but more
experimentation is warranted: Perhaps different rules for defining the
nested subsets would yield better results. Results with a static, nested ECB
were uniformly worse than “Basic ECB” and are not listed.

Table 1. Solving set-partitioning problems with ECB.
BandB Basic ECB SD2 ECB Model

Name Rows Cols Time Nodes Time Nodes Time Nodes
PIB01 19 377 0.5 23 0.5 4 0.7 5
PIB02 30 660 0.6 9 0.9 14 1.0 21
PIBA0 38 2564 71.6 1757 7.6 43 8.0 37
PIB03 49 3308 29.3 275 13.1 119 19.6 213
PIB04 49 2196 4.8 67 4.4 27 4.6 20
PIB05 50 2158 >1K >21K 7.9 109 18.2 253
“Time” is in CPU seconds. “Nodes” are the number of nodes in the branch and bound
enumeration tree. “BandB” uses standard branch and bound alone, while all other columns
use a variant of ECB. “Basic ECB” adds a single branching constraint over all the variables.
“SD2” adds one level of semi-dynamic nesting to basic ECB, by splitting J into two disjoint
sets. Boldface values indicate the most efficient, minimum-time or minimum-node,
solutions. “K” indicates thousands.

3.2 ECB for the Elastic Generalized Assignment
Problem

The problem that instigated our search for better branching techniques is
a version of the generalized assignment problem (GAP) (e.g., Amini and
Racer 1994, Ross and Soland 1975) that we call the “elastic GAP” or
“EGAP.” The GAP arises in a number of contexts but is described here as a
minimum cost assignment of a collection of orders to delivery trucks. Each
order must be delivered, and the number of orders any truck can deliver is
constrained by the amount of time the truck has available to make
deliveries. Deliveries are made from a single depot and each order o
requires one out-and-back trip of known duration. All orders must be
delivered and it is assumed that there is sufficient time available to make
these deliveries in the basic GAP; otherwise the problem is infeasible. In
the EGAP, penalized overtime on some or all trucks is allowed and this
ensures that all deliveries can be met. The model is

254

EGAP

s.t.

� � min c x p z

x o O

ot ot

t To O

t t

t T

ot

t To

∈∈ ∈

∈

∑∑ ∑

∑

+

= ∀ ∈1
 (11)

h x z H t T

x o O t T

z t T

ot ot

o O

t t

ot o

t

t∈
∑ − ≤ ∀ ∈

∈ ∀ ∈ ∈

≥ ∀ ∈

0 1

0

, ,

,

� � (12)

where

o∈ O is the set of orders to be delivered,
t∈ T is the set of trucks that can make the deliveries,
Ot is the set of orders that truck t is capable of delivering,
To is the set of trucks with which order o can be delivered,
cot is the cost (in dollars) of delivering order o with truck t,
pot is the overtime penalty (in dollars per tenths of an hour) for truck

t,
hot denotes the hours (in tenths) required by truck t to deliver order

o,
Ht denotes the total regular-time hours (in tenths) available for

deliveries on truck t,
xot is 1 if order o is delivered by truck t, and is 0 otherwise, and
zt are the hours (in tenths) of overtime on truck t.

Constraints (11) ensure that each order is assigned to exactly one truck, and
“resource constraints” (12) ensure that the hours available on the truck are
not exceeded unless a linear overtime penalty is paid. The GAP is simply
the EGAP with zt ≡ 0 for all t.

Because constraints (11) do not overlap in the EGAP, the sum of all xot
will be integer in any relaxation or restriction. Thus, an ECB constraint
over all the variables, as in (10) for the SPP, would be of no value.
However, the structure of the problem leads one to the following idea: The

sum of (relaxed) orders on a truck, xot
o Ot∈∑ , should be integer before any

individual variable xot, o ∈ Ot, is required to take on a binary value. This
idea can be implemented as basic ECB by adding the following constraints
to the EGAP:

Explicit-Constraint Branching for Solving Mixed-Integer
Programs

255

x y t Tot t
o Ot

− = ∀ ∈
∈∑ 0 , (13)

where each yt ≥ 0 is a general integer variable. This modified EGAP has
| T | new constraints and | T | new integer variables. We hope that the extra
burden placed on the LP solver by these constraints and variables is
outweighed by a significant reduction in the number of LPs that must be
solved.

Actually, Jörnsten and Värbrand (1991) have applied a dynamic version
of the ECB methodology just described to GAPs. In their branch-and-
bound procedure, they branch by explicitly adding constraints to the
problem whenever the sum of orders on a truck is fractional. Our technique
is essentially equivalent, but is obviously much simpler and needs no
specialized code to implement.

We first test ECB, implemented with constraints (13), on a set of eight
EGAPs from the petroleum industry (Brown 1995). The EGAP is difficult
and problems with as few as 200 variables cannot be solved with standard
branch and bound in a reasonable amount of time. Table 2 lists problem
statistics and computational results for these EGAPs (the number of trucks
ranges from 6 to 35, and the number of orders from 21 to 151). The same
hardware, software and software settings are used as for the SPP
computational tests. Results labeled with “ECB” use | T | ECB constraints,
one for each constraint of type (12). Results labeled with “KS” use elastic
knapsack cuts (Appleget 1997) which extend standard knapsack cuts or
“cover cuts” (Balas 1975, Balas and Zemel 1978). A set of at most 200
such cuts is added to the problem before branch and bound begins. The
column annotated solely with “KS” is included for comparison. The results
in Table 2 demonstrate that significant computational improvements can be
obtained with ECB and that there can be a synergistic effect between ECB
and knapsack cuts.

Table 2. EGAP solution results for eight real-world problems.
BandB ECB ECB+KS KS Model

Name Rows Cols Time Nodes Time Nodes Time Nodes Time Nodes

LONGD 30 46 1.7 259 1.9 4 2.2 12 2.2 6
LONGN 27 37 1.5 82 1.5 12 2.1 4 2.1 95
BOSTD 73 330 >1K >170K 2.5 159 3.5 63 >1K >129K
BOSTN 65 266 >1K >183K 1.8 57 3.0 50 >1K >132K
DLWRD 89 469 >1K >113K >1K >137K 8.6 492 >1K >102K
DLWRN 59 200 28.9 10441 1.8 89 3.1 65 8.0 1393
LOSAD 185 1835 >1K >79K >1K >35K 199.0 3725 >1K >49K
LOSAN 182 1790 >1K >73K >1K >36K 815.9 13627 >1K >34K

256

Boldface values denote minimum-time or minimum-node solutions. “ECB” indicates that
ECB constraints (13) were used, and “KS” indicates that elastic knapsack cuts were used.
ECB+KS is clearly the best overall technique.

We have also obtained a set of 84 randomly generated GAPs from the
literature (Osman 1995, Beasley and Chu 1995, Cattrysse et al. 1994),
which have been compiled by Beasley (1997). These problems range in size
from 20 constraints and 75 variables to 220 constraints and 4,000 variables.
Using our terminology, the number of trucks in each problem ranges from 5
to 20 and the number of orders ranges from 15 to 200; each order can be
delivered by each truck. Table 3 summarizes the computational results for
these problems. As with the EGAPs, ECB can improve solution times
significantly for these GAPS, particularly when combined with knapsack
cuts.

Table 3. Summary of computational results for 84 randomly generated GAPs.
 Small (< 1000 Variables) Large (≥ 1000 Variables)

 BandB KS ECB ECB+KS BandB KS ECB ECB+KS
Solved 40.6% 100% 100% 100% 30% 80% 90% 100%
Time 88.2 4.3 6.9 2.9 352.5 113.0 26.5 70.1
Nodes 33K 451 1022 33 49K 3731 1596 724
“Solved” is the percentage of problems successfully solved in under 1,000 CPU seconds,
“Time” is the average CPU seconds required to solve those problems that could be solved in
under 1000 seconds, and “Nodes” is the average number of nodes in the branch-and-bound
tree required by each successfully solved problem. As in Table 2, ECB+KS is the most
efficient procedure.

Since all the data in our version of the EGAP is integer, another ECB
partitioning scheme quickly comes to mind: Ensure that the number of
hours (in tenths) assigned to any truck is integer before requiring that the
variables xot take on binary values. If we were dealing with a standard GAP
with inelastic, inequality resource constraints (zt ≡ 0 in constraints (12)),
simply adding a slack variable to each resource constraint and branching on
these variables would implement ECB. (We might call this implicit-
constraint branching since we would add no constraints, just variables.)
Because of the overtime variables zt, however, this will not work for the
EGAP. Therefore, we implement ECB by defining integer ECB variables

′yt ≥ 0 and adding ECB constraints:

h x y t Tot ot

o O

t

t∈
∑ − ′ = ∀ ∈0 , (14)

Explicit-Constraint Branching for Solving Mixed-Integer
Programs

257

and by setting the branching priority higher for ′yt than for the xot. Since
hot > 1 is usual, this type of branching corresponds to using ECB constraints
(6) with αkj > 1.

This variant of ECB is a failure, by itself and in conjunction with ECB
constraints (13). (We omit these computational results; most run times
exceed 1000 seconds.) We conjecture that ECB fails in this instance
because: If m < $ ′yt < m + 1 for some LP relaxation to the EGAP and for
some integer m, branching can occur via y′ t ≤ m or ′yt ≥ m + 1. But, given
the nature of constraints (12) and coefficients hot, there may be no solution
to EGAP with ′yt = m or ′yt = m + 1. Thus, the algorithm wastes time
investigating infeasible values for ′yt .

There may be a way around the difficulty just described: Dynamic
programming could be used first to determine the set of feasible values for
each ′yt , say mt1 < mt2

 < … < mt L
, based on the elastic knapsack

constraints (12). Then, when mtl < $ ′yt < mtl+1 the branching rule would be
“ ′yt ≤ mtl or ′yt ≥ mtl+1 .” Valid values for the mtl could even be determined
dynamically within a branch-and-bound algorithm. We have not yet
investigated these possibilities.

3.3 A Plant-Line Scheduling Model

GLS (Generic Line Scheduler) models plant-line scheduling in the food
processing industry on a shift-by-shift basis, over a two-week horizon. The
key model variable is Xptp′t′, which is 1 if “production pattern” p finishes
production at time t and is immediately followed by pattern p′ in shifts t + 1
through t′. A production pattern produces a single product on a processing
line and packs that product into one or more stock-keeping units (skus) on
one or more packing lines. The use of variables Xp′t′pt allows accurate
modeling of product and packing changeovers.

GLS includes standard production/inventory/demand constraints and
uses flow-balance constraints to route one unit of “pattern flow” on each
processing line over the shifts in the time horizon:

− + = ∀ ∈ ∈ ∈′ ′
′ ′ ∈

′ ′
′ ′ ∈− +

∑ ∑X X l L t T p Pp t pt

p t PT

ptp t

p t PT

lt

pt pt, ,

, ,
1 6 1 6

0 , (15)

where L is the set of processing lines, T is the set of shifts, Plt is the set of

products that may be produced on line l during shift t, PTpt
− is the set of

patterns and ending shifts for those patterns that may directly precede

258

pattern p beginning on shift t, and PTpt
+ is analogous, but applies to

immediately succeeding patterns and shifts. (Other constraints start each
line off with one unit of flow, limit each pattern from appearing more than
once during the week, ensure that each sku is packed, etc.)

The model formulation is complicated, but the wisdom of the
formulation is validated by tight LP relaxations, never worse than 10% of
the optimal solution value in any test. However, the sheer number of binary
variables in this model makes branch and bound difficult to use. We can
reduce this number with ECB.

Constraints (15) are flow-balance constraints for “nodes,” indexed by p
and t, in a directed acyclic graph. If we fix the flow transiting each node to
0 or 1, the LP relaxation of GLS will have an intrinsically integer solution,
or it will be infeasible. This observation leads to the following model
modifications:

1. Add binary variables Ypt defined to be 1 if pattern p starts at time t, else

0.
2. Redefine variables Xp′t′pt to be non-negative and continuous. (Upper

bounds are unnecessary.)
3. Add the following set of constraints:

X Y l L t T p Pptp t

p t PT

pt lt

pt

′ ′
′ ′ ∈ +
∑ − = ∀ ∈ ∈ ∈

,

, ,
1 6

0 . (16)

Now, instead of branching on 4,000–15,000 binary variables Xp′t′pt, we have
a complete branching scheme that involves only 500 or so variables, Ypt.
The price we pay is the addition of 500 or so constraints.

At this point we must point out the relationship between ECB for this
problem and SOS branching. The set of variables Xptp′t′ plus Ypt in each
constraint (16) can be classified as a set of SOS-Type-1 (S1) variables and
as a set of SOS-Type-3 (S3) variables if Ypt is reflected: Exactly one of the
variables in the set must be 1. CPLEX, our chosen solver, uses a different
definition of a set of S1 variables however: At most one variable in the set
may be strictly between its bounds (GAMS 1996). On the other hand,
CPLEX will automatically identify sets of S3 variables (to include
reflections) via the constraints (16) and perform S1 branching on those sets,
as described by Tomlin (1970). As we shall see, SOS branching has an
erratic effect on run times for GLS.

We note also that each set of variables xj for j ∈ Ji in the SPP is an S3
set, as is each set of variables xot for t ∈ Ot in the EGAP. Experiments with
our SPP problems show that SOS branching does not provide a significant
advantage over basic branch and bound. Furthermore, all EGAP problems

Explicit-Constraint Branching for Solving Mixed-Integer
Programs

259

that “time out” at 1000 seconds for basic branch and bound also time out
with SOS branching with only one exception. We believe that the long run
times with SOS arise because SOS relies on a rigid and meaningful
ordering of the S3 variables (Beale and Tomlin 1970) and there is no such
ordering in these problems or, at least, we have not found one.

GLS can exploit another constraint-branching idea, too. Product
changeovers are important and expensive, so we branch on ′Qw , defined to
be the number of such changeovers during week w, using:

X Q wp t pt w

p t PT f fp Pt T pt p pww

′ ′
′ ′ ∈ ≠∈∈

− ′ = ∈
−

′

∑∑∑
,

,
1 6

� �0 1 2 (17)

where ′Qw ≥ 0 and integer for w ∈ 1, 2, Tw is the set of shifts in week w, Pw
is the set of patterns that may be produced in week w, and fp is the product
associated with pattern p. (Lower bounds on ′Qw can sometimes be implied
and exploited, but we do not use these bounds in the testing here.)

Model statistics for a set of GLS models are displayed in Table 4, with
various combinations of the ECB constructs (16) and (17). Corresponding
computational results displayed in Table 5. Tests are carried out using the
same hardware as in the previous examples, but GLS is generated using
GAMS (1996) and solved with CPLEX using a 5% optimality tolerance
and using the “pseudo-cost” variable-selection rule for branching. Results
indicate that the simple, product-changeover ECB constraints (17) do help
solve the GLS model but typically interfere with rapid solutions when
combined with ECB constraints (16). The most consistent results are
obtained using ECB constraints (16) alone. However, SOS branching does
show promise.

SOS branching is the best solution strategy for two of the five problems
but is a horrible strategy for one of them. Our ordering of the S3 variables,
which is based on time (see the caption of Table 5), works well in some
cases. So, SOS may potentially improve run times for GLS, but more
experimentation would be required to determine a consistently good
ordering for the S3 variables, if one exists.

Table 4. GLS Model Statistics.
 Basic Model (a):

No ECB
Model (b): With
Constraints (17)

Model (c): With
Constraints (16)

Model (d): With
Constraints (16)+(17)

Name m n nint m n nint m n nint m n nint

GLS1 567 4202 4157 569 4204 4159 1092 4727 527 1094 4729 529
GLS2 595 4494 4439 597 4496 4441 1141 4985 548 1143 5042 550
GLS3 639 5219 5162 641 5221 5164 1227 5750 590 1229 5809 592

260

 Basic Model (a):

No ECB

Model (b): With

Constraints (17)

Model (c): With

Constraints (16)

Model (d): With

Constraints (16)+(17)

Name m n nint m n nint m n nint m n nint

GLS4 728 10231 10168 730 10233 10170 1400 10903 674 1402 10905 676
GLS5 772 14709 14644 774 14711 14646 1486 16423 716 1488 15425 718

All models pack 15-25 skus over two weeks. “m” in number of constraints, “n” is number of
variables, and “nint” is number of integer variables.

Table 5. GLS Computational Results.
 Model (a) Model (b) Model (c) Model (d) Mod.(c)+SOS
Name Sec. Nodes Sec. Nodes Sec. Nodes Sec. Nodes Sec. Nodes
GLS1 27.8 125 7.9 11 6.7 13 18.6 18 17.9 53
GLS2 288.7 1730 71.2 182 9.2 24 57.3 121 389.3 1774
GLS3 131.4 715 120.7 231 20.4 57 46.3 63 11.0 19
GLS4 98.1 134 69.5 54 55.0 75 91.6 87 16.7 13
GLS5 6468.8 12694 1785.9 1888 791.0 598 3340.0 1504 > 9K > 11K
Boldface values indicate the most efficient, minimum-time or minimum-node, solutions. All
models are solved with a 5% relative optimality tolerance. “Mod.(c)+SOS” denotes Model
(c) with each ECB constraint (16) used to identify a set of S3 variables on which S1
branching is performed. Times for “Mod.(c)+SOS” reflect the best ordering of the S3
variables found empirically: The variables Xptp′t′ are ordered by increasing t′ and are
followed by Ypt.

4. SUMMARY AND COMMENTS

In summary, it appears that ECB holds much promise for reducing
solution times for certain MIPs. Future work will explore the nested and
dynamic versions of ECB more fully.

We mention one issue that is not discussed in the body of this paper:
ECB can sometimes interfere with the rapid identification of good
incumbent solutions within a branch-and-bound procedure. Apparently, an
ECB variable is branched on in the “wrong direction” in these cases, and
much time is wasted exploring a large, unfruitful portion of the
enumeration tree. On the other hand, ECB may still lead to the quick
fathoming of nodes through strong changes in local lower bounds, if a good
incumbent is known. We have found that this conflict can sometimes be
resolved by finding a good incumbent using a model without ECB, and
then returning to the model with ECB and with the initial incumbent.

ACKNOWLEDGMENTS

Jeffrey Appleget’s research was partially supported by the Faculty
Development and Research Fund, U.S. Military Academy. Kevin Wood’s

Explicit-Constraint Branching for Solving Mixed-Integer
Programs

261

research was partially supported by the Office of Naval Research and the
Air Force Office of Scientific Research. The authors thank their respective
sponsors. The authors also thank John Tomlin for providing several
references.

REFERENCES

Amini, M. and Racer, M. (1994) “A rigorous computational comparison of alternative
solution methods for the generalized assignment problem”, Management Science, vol.
40, pp. 868-890.

Appleget, J.A. (1997) “Knapsack cuts and explicit-constraint branching for solving integer
programs”, Ph.D. dissertation, Naval Postgraduate School, Monterey, CA, June 1997.

Balas, E. (1975) “Facets of the knapsack polytope”, Mathematical Programming, vol. 8, pp.
146-164.

Balas, E. and Zemel, E. (1978) “Facets of the knapsack polytope from minimal covers”,
SIAM Journal of Applied Mathematics, vol. 34, pp. 119-148.

Beale, E.M.L. and Tomlin, J.A. (1970) “Special facilities in a general mathematical
programming system for non-convex problems using ordered sets of variables”, in
Proceedings of the 5th International Operations Research Conference, J. R. Lawrence
(ed.), Tavistock Publications Limited, London, pp. 447-454.

Beasley, J.E. “Generalised assignment problem”, OR-Library, The Management School at
Imperial College of Science, Technology, and Medicine, London, United Kingdom,
available from http://mscmga.ms.ic.ac.uk/, Internet, accessed 10 February 1997.

Beasley, J.E. and Chu, P.C. (1995) “A genetic algorithm for the generalised assignment
problem”, working paper, The Management School, Imperial College, London SW7
2AZ, England.

Bixby, R.E., Ceria, S., McZeal, C.M., and Savelsbergh, M.W.P. MIPLIB 3.0, Computational
and Applied Mathematics Department, Rice University, Houston, Texas, available from
http://www.caam.rice.edu/~bixby/miplib/miplib.html, Internet, accessed 10 February
1997.

Brooke, A., Kendrick, D., and Meeraus, A. (1992) Release 2.25, GAMS, A Users Guide,
GAMS Development Corporation, Washington, DC.

Brown, G., personal communication, October 14, 1995.
Cattrysse, D., Salomon, M., and Van Wassenhove, L.N. (1994) “A set partitioning heuristic

for the generalized assignment problem”, European Journal of Operational Research,
vol. 72, pp. 167-174.

CPLEX Optimization, Inc., CPLEX Manual, Using the CPLEXTM Callable Library and
CPLEXTM Mixed Integer Library, Incline Village, Nevada, 1993.

Escudero, L.F. (1987) “On extensions of the Beale-Tomlin special ordered sets and
strategies for LP-based solving a general class of scheduling problems”, Martin Beale
Memorial Symposium, London, July.

Escudero, L.F. (1988) “S3 sets, an extension of the Beale-Tomlin special ordered sets”,
Mathematical Programming: Series B, vol. 42, pp. 113-123.

Foster, B.A. and Ryan, D.M. (1981) “An integer programming approach to scheduling”, in
Computer Scheduling of Public Transport (A. Wren, ed.) North-Holland Publishing
Company, pp. 269-280.

262

GAMS Development Corporation (1996) GAMS—The Solver Manuals, Washington, DC.
Hummeltenberg, W. (1984) “Implementations of special ordered sets in MP software”,

European Journal of Operations Research, vol. 17, pp. 1-15.
Jörnsten, K.O. and Larsson, T. (1988) “A generalized branching technique”, Department of

Mathematics Research Report, Linkoping Institute of Technology.
Jörnsten, K.O. and Värbrand, P. (1991) “A hybrid algorithm for the generalized assignment

problem”, Optimization, vol. 22, pp. 273-282.
Osman, I.H. (1995) “Heuristics for the generalised assignment problem: Simulated

annealing and tabu search approaches”, OR Spektrum, vol. 17, pp. 211-225.
Ross, G.T. and Soland, R.M. (1975) “A branch and bound algorithm for the generalized

assignment problem”, Mathematical Programming, vol. 8, pp. 91-103.
Ronen, D., personal communication, March 20, 1997.
Sol, M. (1994) “Column generation techniques for pickup and delivery problems”, Ph.D.

thesis, Technische Universiteit Eindhoven.
Tomlin, J.A. (1970) “Branch and Bound Methods for Integer and Non-Convex

Programming”, in Integer and Nonlinear Programming, J. Abadie (ed.), North-Holland
Publishing Company, Amsterdam.

Vössner, S., and Wood, R. K. (1999) “A Plant-Line Scheduling Algorithm Using a Genetic
Algorithm and Integer Programming”, Working Paper, 15 March.

